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Goals for this Discussion:

J Cover some general filter theory
d Apply this theory to an amateur radio need — SO2R (Single Operator 2 Radios)
 Conclude in ~ 20 minutes

Topics to be covered

* Why we need filters?

* Introduction to some common filter terminology

* Brief comparison of filter “families”

* Free software and recommended references to help with the design process
* ELSIE design of a 40m ( 7 MHz ) bandpass filter

* Design modification to reduce critical RF currents

» Simulation results — frequency response and voltage/current requirements

* Example 7 MHz HPF



What Do We Need Filters For?

* Filters are an absolute necessity to separate desired signals from undesired
sighals
* Radio transmitters and receivers would not be possible without them

* Filters are found at the input of each “frequency band” { 3.5, 7, 14 MHz, etc}in a
receiver and are also used to achieve the final desired bandwidth of 2.7 kHz for
SSB-voice or ~ 600 Hz for CW (code) ( Filters occur in transmitters too © )

e Good filters in receivers do influence the cost of the radio significantly. In higher-
end radios there are multiple filters used to select different bandwidths
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Common Filter Terminology

* Lowpass Filters — pass all

frequencies up to a specific
frequency

* Highpass Filters — pass all
frequencies above a specific
frequency

* Bandpass Filters — pass a range of
frequencies

* Bandreject Filters — reject a range of
frequencies
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Filter Families

e Different “filter families” offer different characteristics
» “zero ripple” in the passband (Butterworth)

» “defined ripple” in the passband (Chebyshey, Elliptic)
* Shallow or deep “filter skirts”
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Fig. 2-5 Normalized low-pass high-pass relationship.
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f_is the LPF or HPF cutoff frequency

Steeper “Skirts”

Increased Filter Complexity Gives
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Figure 4.11 Loss of LP Chebyshev approximation for A_ .. =1 dB.
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More Filter Considerations - 2

* The larger the ripple factor, the steeper the filter skirts can be, but
with
* Increased insertion loss
* Increased VSWR in the passband

* Each component in a filter has an associated “Q-Value” or quality
factor
e Q-values greater than a “minimum™” are required to achieve a desired filter
response
* Inductors with series resistance limit their “Q”
e Capacitors with parallel resistance limit their “Q”

* If your inductors have less than the “minimum Q”, the passband loss
increases, and the “corner” of the filter prematurely rounds off.

* Minimum “Q” value discussed next page



How Q Enters In
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Filter Considerations - 4

* LPF and HPF were just shown to require a certain minimum Q value
for each component
* Inductors are the “problem” with Qs from 20 to perhaps 200, while capacitors
have Q values of 3,000 — 5,000 or more; higher Q is better

* The Q of components in BPF may need to be considerably higher

Minimum Q for BPF is:

Passband Width
Stopband
=0 X where =
len Qmm,LPF QBP QBP Passband

Punchline: BPFs are more challenging than LPFs or HPFs

FYI With an Input of 1,500 Watts, 0.3 dB loss means 100 Watts is dissipated

\ In the filter
Stopband Width 8



Resources for Filter Work

* ELSIE — “free” filter design software on the web, up to 7t" order filters

 LTSpice — “free” circuit simulator to analyze your filters (and other circuits)

* ORCAD Lite — “free” SPICE analysis software

* MicroCap

* DXZone — Filter design

e DesignSpark PCB for PCB layout (not limited to 3” x 4” like many other programs)

References:
* Electronic Filter Design Handbook, Arthur B. Williams, McGraw-Hill
* Principles of Active Network Synthesis and Design, Gobind Daryanani, John Wiley
* Electrical Filters, Donald White, Don White Consultants



Design Our Filter in ELSIE —40m BPF

Ripple
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Why an Elliptic Filter Rather Than Chebyshev?

* Elliptic filters have ripple in both the passband and stopband
* Chebyshev filters have ripple only in their passband

* Proper design of an elliptic can:
(1 Develop steeper skirts than the same order Chebyshev filter

O Allows selective placement of large attenuation “poles” at critical frequencies below and
above the Passband

1 Obtain required attenuation everywhere across the passband, not just at frequencies farther
removed from the passband
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Elliptic BPF for 7 MHz by ELSIE

Standard Schematic Output from ELSIE

1 > 3 4
50 2.66662uH  11.975uH 50
0 342.64nH 98552 1.90UR 342.64nH
™ 1 1
F\j/ —L—  431686pF  193.858pF L §
1508.71pF 1508.71pF
TM 14.834M 3.3032M M

Each LC Section has a specific resonant frequency — Can be very useful in tuning up the filter



Some Latitude in Placing These
Notches for Greatest Attenuation

Filter Response from ELSIE “Plot”
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SPICE Analysis of ELSIE BPF Design - 1,500 Watts
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In-band capacitor voltages around 1.3 kV e e
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A 16:1 Impedance Step-Up in First and Last Resonator
Provides Current Reduction

* In 3 of the 4 cases where inductors are needed in my design, powdered
iron toroids are used

* Toroids are “self-shielding”, thus relatively insensitive to other nearby components
and aluminum/steel box walls

» Use of single winding, air-core inductors become prohibitively large in the real estate
required. (This can be done, but capacitors complicate things)

* Instead of using a single-winding on the first and last coils, use of quadrifilar windings
( four wires together) reduces the aforementioned 25 amps to 25/4 = 6.25 amps

e A source of good quality, low-cost, high-voltage capacitors is hard to find.
When using air-core inductors, “door knob” capacitors are generally used -
S20 each, or other high quality capacitors

* These are expensive
* Multiple capacitors must be used in parallel to achieve “current sharing”

* | use MLCCs — multi-layer ceramic chip capacitors, which are very small and MUCH
less expensive



Modified ELSIE Design
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The resistors give the inductors “real-world” values of Q rather than “infinite”, perfect Q

The “dots” on the inductors indicate phasing of the windings — critically important
Phase winding details are discussed in Radio Amateur’s Handbook and other places
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Modified Design Voltages and Currents
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Capacitor voltages still ~ 1.5 kV
First and Last inductors ~ 6 Amps rather than 25
Air Core inductor, L5, has ~ 10 Amps

Cannot use toroid due to saturation
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Quadrifilar Toroids and “Door Knob” Capacitors
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Highpass Filter for 7 MHz

RIGOL
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o

10.00 dBm
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Deepest “notch” at 3.5 MHz
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10.000 ms Lin

Units
dBm

Ref Offset
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Four stacked cores to decrease core saturation concerns

Multiple, paralleled MLCCs for current-sharing



Summary

High voltages and currents occur in even a 100 Watt filter, much less a 1.5 KW filter

The nature of self-shielding in toroids makes the design more compact with less
interaction from one resonator to the next

* Must carefully monitor core saturation*
* When this occurs, use a larger diameter core or “stack” 2 or 3 cores together
* In my case | elected to use a single, air-wound inductor for the one inductor

Here we have considered only frequency response and out-of-band attenuation
. ]Icn true ;communications” applications, other factors such as group delay and linear phase must be
actored in

Most filters we use are “Odd order”. Even-order filters have a different output
impedance than their input, creating another VSWR challenge

With the advent of inexpensive capacitance meters as well as other Z meters, such a
project is doable without expensive test equipment. Once you “get close”, a LARG
mergbder with a network or impedance analyzer can get you across the finish line if
needed.

kzerozr@gmail.com

*Manner in which core saturation is calculated is found at Amidon Associates web site
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Other Filter Considerations

* The “order of the filter” indicates how many components, sometimes
called “resonators”, are used

* The higher the filter order, the sharper the possible filter response
* The more complex the filter, the more difficult to build and “tune”
* Generally, increasing insertion loss occurs as filter order increases

* Ripple in the passband is directly related to the minimum VSWR
possible with a filter

~ VSWR -1 | €
VSWR +1 P17 &

P R =—10log,, (1+,02)

R4s = Return Loss, in dB

&€ is the ripple factor in Chebyshev filters
f

f'= f " is “normalized frequency” f_is the LPF or HPF cutoff frequency
c



