Design of Frequency Architectures
 to Eliminate Mixer Spurious Responses

by Jeff Crawford

March 17, 1996
Several different methods have been described in the literature to assess mixer performance for a given frequency architecture ${ }^{1,2,3,4}$. The most commonly used relationship shown in [1] is solved for those cases of M and N which give spurious outputs at the desired IF or within a range of the IF. This same relationship can be worked in reverse to identify different ranges within the IF which, when mapped through the mixer in reverse, identify input frequencies suffering from spurious mechanisms.

$$
\begin{equation*}
f_{\text {out }}=M f_{L O}+N f_{R F} \tag{1}
\end{equation*}
$$

Bain Technique for Mixer Characterization

The next several pages are intended to describe a method which is a derivative of [1] above, and was first published in rf Design, May, 1989^{4}. I have filled in the missing details to help document for myself the technique and application of the algorithm. Two slightly different expressions related to [1] above are used to describe the desired and undesired signals appearing at the IF output.
$N_{1} F_{\text {in }}+M_{1} F_{L o}=F_{\text {out }}$
$N F_{x}+M F_{L O}=F_{\text {out }}$
[2,3] taking on values of ± 1 to give an output at the IF. The second expression, [3], determines some frequency, F_{x} which, when combined with the spurious mechanisms of the mixer, also gives an output at the IF. F_{x} is defined in expression [4]. F_{x} is defined to be some signal slightly removed from $F_{i n}$ which, due to the spurious mechanism, produces undesired output at the IF. Δ_{Fx} describes this offset in frequency.

$$
\begin{equation*}
\Delta_{F x}=F_{x}-F_{i n} \tag{4}
\end{equation*}
$$

There are four different scenarios of interest with regard to frequency conversion schemes finding most use. The relationships we derive below eliminate an unknown swept variable, such as the local oscillator frequency in a fixed IF case, to culminate in the desired mathematical expression. This elimination technique is used throughout to synthesize relationships which show the position of the interfering signal within the IF passband.

Type 1 - Receiver Case	$N F_{x}+M F_{L O}=F_{\text {out }}$	F_{x} is Signal Offset From Desired Input Signal Giving Output for Fixed IF	$\begin{aligned} & \hline \Delta_{F x}=F_{x}-F_{\text {in }} \text { at Input } \\ & \mathrm{F}_{\mathrm{rfi}}=\text { Mapping of IF Passband } \\ & \text { Back to Input } \end{aligned}$
Type 2 - Receiver Case	$N F_{x}+M F_{L O}=F_{\text {out }}$	F_{x} is Signal Offset From Desired Input Signal Giving Output for Fixed LO	$\Delta_{F x}=F_{x}-F_{i n}$ at Input $\mathrm{F}_{\mathrm{rfi}}=$ Mapping of IF Passband Back to Input
Type 3-Transmitter Case	$N F_{i n}+M F_{L O}=F_{x}$	F_{x} is Signal Offset From Desired Output Signal Giving Output for Fixed LO	$\Delta_{F x}=F_{x}-F_{\text {out }}$ at Output $\mathrm{F}_{\mathrm{rfi}}=$ Mapping of Ouput Passband Back to Input
Type 4-Transmitter Case	$N F_{i n}+M F_{L O}=F_{x}$	F_{x} is Signal Offset From Desired Output Signal Giving Output for Fixed RF Input	$\Delta_{F x}=F_{x}-F_{\text {out }}$ at Output $\mathrm{F}_{\mathrm{rfi}}=$ Mapping of Ouput Passband Back to Input

[^0]Case 1: Fixed Output, Swept Local Oscillator

We begin with the following pair of equations:

$$
\begin{align*}
& N_{1} F_{\text {in }}+M_{1} F_{L O}=F_{\text {out }} \\
& N F_{x}+M F_{L O}=F_{\text {out }} \tag{5,6}
\end{align*}
$$

Multiplying each equation by M or M_{1} and subtracting to cancel F_{LO} gives:

$$
\begin{align*}
& M N_{1} F_{i n}+M M_{1} F_{L O}=M F_{o u t} \\
& \frac{-\left(M_{1} N F_{x}+M M_{1} F_{L O}\right)=-M_{1} F_{o u t}}{N_{1} M F_{i n}-N M_{1} F_{x}=F_{o u t}\left(M-M_{1}\right)} \tag{7}
\end{align*}
$$

Making the substitution for F_{x} from [4] above gives:

$$
\begin{equation*}
N_{1} M F_{i n}-N M_{1}\left(\Delta_{F x}+F_{i n}\right)=F_{o u t}\left(M-M_{1}\right) \tag{8}
\end{equation*}
$$

The input frequencies for $F_{\text {in }}$ range from $F_{\text {min }}$ to $F_{\max }$ which give two different answers for Δ_{Fx}.

$$
\begin{align*}
\Delta_{F x 1} & =\frac{F_{\min }\left(N_{1} M-N M_{1}\right)-F_{o u t}\left(M-M_{1}\right)}{N M_{1}} \\
\Delta_{F x 2} & =\frac{F_{\max }\left(N_{1} M-N M_{1}\right)-F_{o u t}\left(M-M_{1}\right)}{N M_{1}} \tag{9}
\end{align*}
$$

A similar elimination of unknown variables can be performed to map the IF range back to the input, giving the designer insight into what portions of the IF band are subject to spurious corruption by portions of the input band. Begin once again with the relationships in [5] and [6].

$$
\begin{align*}
& N_{1} F_{i n}+M_{1} F_{L O}=F_{o u t} \\
& N F_{x}+M F_{L O}=F_{o u t} \tag{5,6}
\end{align*}
$$

The input frequency, F_{in}, is defined to be equal to $\mathrm{F}_{\mathrm{rf} 1}$ and F_{x} equal to $\Delta_{\mathrm{Fx}}+\mathrm{F}_{\mathrm{in}}$:

$$
F_{i n}=F_{r f 1} \quad F_{x}=\left.\Delta_{F x}\right|_{\Delta F_{\max }}+\left.F_{i n}\right|_{F_{i n}=F_{r f 1}}=\Delta F_{\max }+F_{r f 1}
$$

Once again F_{LO} is varying and $\mathrm{F}_{\text {out }}$ is known, therefore $\mathrm{F}_{\text {LO }}$ is eliminated from the pair of equations in $[5,6]$.

$$
\begin{align*}
& M N_{1} F_{r f 1}+M M_{1} F_{L O}=M F_{o u t} \\
& \frac{-\left(M_{1} N\left(\Delta F_{\max }+F_{r f 1}\right)+M_{1} M F_{L O}\right)=-M_{1} F_{o u t}}{M N_{1} F_{r f 1}-M_{1} N\left(\Delta F_{\max }+F_{r f 1}\right)=F_{o u t}\left(M-M_{1}\right)} \tag{10}
\end{align*}
$$

The IF passband is $2 \Delta \mathrm{~F}_{\text {max }}$ in width, therefore substituting $\pm \Delta \mathrm{F}_{\text {max }}$ gives the two frequencies at the input which define the mapping of the IF output passband to the input.

$$
\begin{align*}
& F_{r f 1}=\frac{M_{1} N\left(-\Delta F_{\max }\right)+F_{\text {out }}\left(M-M_{1}\right)}{M N_{1}-M_{1} N} \tag{11}\\
& F_{r f 2}=\frac{M_{1} N\left(\Delta F_{\max }\right)+F_{\text {out }}\left(M-M_{1}\right)}{M N_{1}-M_{1} N}
\end{align*}
$$

Case 2: Fixed Local Oscillator, Swept Input

We begin with the following pair of equations:

$$
\begin{align*}
& N_{1} F_{\text {in }}+M_{1} F_{L O}=F_{\text {out }} \\
& N F_{x}+M F_{L O}=F_{\text {out }} \tag{5,6}
\end{align*}
$$

Setting [5] equal to [6] and solving for F_{x} gives:

$$
\begin{align*}
& N_{1} F_{i n}+M_{1} F_{L O}=N F_{x}+M F_{L O} \\
& F_{x}=\frac{N_{1} F_{i n}+\left(M_{1}-M\right) F_{L O}}{N} \tag{12}
\end{align*}
$$

Using the fact in [4] and substituting $\mathrm{F}_{\text {min }}$ and $\mathrm{F}_{\text {max }}$ for $\mathrm{F}_{\text {in }}$ gives the following:

$$
\begin{align*}
& \Delta_{F, x 1}=\frac{F_{\min }\left(N_{1}-N\right)+\left(M_{1}-M\right) F_{L O}}{N} \\
& \Delta_{F_{x 2}}=\frac{F_{\max }\left(N_{1}-N\right)+\left(M_{1}-M\right) F_{L O}}{N} \tag{13,14}
\end{align*}
$$

A similar elimination of unknown variables can be performed to map the IF range back to the input, giving the designer insight into what portions of the IF band are subject to spurious corruption by portions of the input band. Begin once again with the relationships in [5] and [6].

$$
\begin{align*}
& N_{1} F_{\text {in }}+M_{1} F_{L O}=F_{\text {out }} \\
& N F_{x}+M F_{L O}=F_{\text {out }} \tag{5,6}
\end{align*}
$$

The input frequency, F_{in}, is defined to be equal to $\mathrm{F}_{\mathrm{rf} 1}$ and F_{x} equal to $\Delta_{\mathrm{Fx}}+\mathrm{F}_{\mathrm{in}}$:

$$
\begin{aligned}
F_{i n}=F_{r f 1} \quad F_{x} & =\Delta_{F_{x}}+F_{i n}=\Delta_{F_{x}}+F_{r f 1} \\
& =\Delta_{F_{x}}+F_{i n}=-\Delta_{F_{x}}+F_{r f 2}
\end{aligned}
$$

$\mathrm{F}_{\text {out }}$ is varying, therefore $\mathrm{F}_{\text {out }}$ is eliminated from the pair of equations in $[5,6]$.

$$
\begin{align*}
& N_{1} F_{r f}+M_{1} F_{L O}=N F_{x}+M F_{L O} \\
& F_{r f}=\frac{N F_{x}+\left(M-M_{1}\right) F_{L O}}{N_{1}} \tag{15}
\end{align*}
$$

The IF passband is $2 \Delta \mathrm{~F}_{\text {max }}$ in width, therefore substituting $\pm \Delta \mathrm{F}_{\text {max }}$ gives the two frequencies at the input after substituting for F_{x}.

$$
\begin{align*}
& F_{r f 1}=\frac{\Delta_{F_{x}} N+\left(M-M_{1}\right) F_{L O}}{N_{1}-N} \\
& F_{r f 2}=\frac{-\Delta_{F_{x}} N+\left(M-M_{1}\right) F_{L O}}{N_{1}-N} \tag{16}
\end{align*}
$$

Case 3: Fixed Local Oscillator, Swept Input

A modification in the expressions used is incorporated here to accomodate what is termed the "transmitter" case. In the transmitter case the input signal at RF is assumed "clean" with the only spurious products generated at the output due to mixer spurious responses, i.e. no contribution from nearby signals at the input. In the receiver cases the potential for nearby signals to generate spurious output mechanisms is the concern, contrasted here with internally generated signals occurring within $\Delta \mathrm{F} \mathrm{MHz}$ of the desired output (transmitted) signal for the transmitter case.

$$
\begin{align*}
& N_{1} F_{i n}+M_{1} F_{L O}=F_{o u t} \tag{17,18}\\
& N F_{i n}+M F_{L O}=F_{x} \tag{19}
\end{align*}
$$

with F_{x} defined to be:

$$
\Delta F_{x}=F_{x}-F_{o u t}
$$

The quantity fixed in value is the local oscillator frequency, F_{LO}. The derivation proceeds by elimination of the swept input frequencies from both [17] and [18].

$$
\begin{array}{ll}
\frac{N N_{1} F_{\text {in }}+N M_{1} F_{L O}=N F_{\text {out }}}{-\left(N_{1} N F_{\text {in }}+N_{1} M F_{L O}-N_{1} \Delta F_{x}=N_{1} F_{\text {out }}\right)} & \Delta_{F x 1}=\frac{\left(N_{1} M-N M_{1}\right) F_{L O}+\left(N-N_{1}\right)\left(F_{\text {out }}\right)_{\min }}{\left(N M_{1}-N_{1} M\right) F_{L O}+N_{1} \Delta F_{x}=\left(N-N_{1}\right) F_{\text {out }}}
\end{array} \quad \begin{aligned}
& N_{1} \\
& \Delta_{F x 1}=\frac{\left(N_{1} M-N M_{1}\right) F_{L O}+\left(N-N_{1}\right)\left(F_{\text {out }}\right)_{\max }}{N_{1}}
\end{aligned}
$$

The $\Delta \mathrm{F}$ calculated in equations [21] and [22] is the frequency offset from the output for a given (M, N) spurious mixer product.

In a manner similar to that for Cases 1 and 2 the frequencies at the input causing the spurious products at the output are derived.

$$
\begin{align*}
& N_{1} F_{\text {in }}+M_{1} F_{L O}=F_{\text {out }} \tag{23,24}\\
& N F_{\text {in }}+M F_{L O}=F_{x} \tag{25}
\end{align*}
$$

with F_{x} defined to be:

$$
\begin{align*}
& N N_{1} F_{\text {in }}+N M_{1} F_{L O}=N F_{\text {out }} \tag{26}\\
& \frac{-\left(N_{1} N F_{\text {in }}+N_{1} M F_{L O}-N_{1}\left(\Delta F_{x}\right)_{\max }=N_{1} F_{\text {out }}\right)}{\left(N M_{1}-N_{1} M\right) F_{L O}+N_{1}\left(\Delta F_{x}\right)_{\max }=\left(N-N_{1}\right) F_{\text {out }}} \tag{27}
\end{align*}
$$

$$
\begin{align*}
& F_{r f 1}=\frac{\left(N_{1} M-N M_{1}\right) F_{L O}-N_{1}\left(\Delta F_{x}\right)_{\min }}{N_{1}-N} \\
& F_{r f 2}=\frac{\left(N_{1} M-N M_{1}\right) F_{L O}-N_{1}\left(\Delta F_{x}\right)_{\max }}{N_{1}-N} \tag{28}
\end{align*}
$$

Case 4: Fixed Input Frequency, Swept Local Oscillator

In the final case to be presented, the input frequency is fixed while the local oscillator varies. In keeping with the other derivations performed, the swept local oscillator frequency term is eliminated from the pair of equations. Once again, the transmitter case is considered, looking for output spurious frequencies within $\Delta \mathrm{FMHz}$ of the output frequency.

$$
\begin{equation*}
N_{1} F_{i n}+M_{1} F_{L O}=F_{o u t} \tag{17,18}
\end{equation*}
$$

with F_{x} defined to be:

$$
\begin{equation*}
\Delta F_{x}=F_{x}-F_{o u t} \tag{19}
\end{equation*}
$$

$$
\begin{align*}
& M N_{1} F_{\text {in }}+M M_{1} F_{L O}=M F_{\text {out }} \tag{29}\\
& \frac{-\left(M_{1} N F_{\text {in }}+M_{1} M F_{L O}-M_{1} \Delta F_{x}=M_{1} F_{\text {out }}\right)}{\left(M N_{1}-M_{1} N\right) F_{R F}+M_{1} \Delta F_{x}=\left(M-M_{1}\right) F_{\text {out }}} \tag{30}
\end{align*}
$$

$$
\begin{align*}
& \Delta_{F x 1}=\frac{\left(M-M_{1}\right)\left(F_{\text {out }}\right)_{\min }-\left(M N_{1}-M_{1} N\right) F_{\text {in }}}{M_{1}} \\
& \Delta_{F x 2}=\frac{\left(M-M_{1}\right)\left(F_{\text {out }}\right)_{\max }-\left(M N_{1}-M_{1} N\right) F_{\text {in }}}{M_{1}} \tag{31}
\end{align*}
$$

In a manner similar to that for Cases 1 and 2 the frequencies at the input causing the spurious products at the output are derived.
$N_{1} F_{\text {in }}+M_{1} F_{L O}=F_{\text {out }}$
$N F_{i n}+M F_{L O}=F_{x}$
[23, 24]
$M N_{1} F_{\text {in }}+M M_{1} F_{L O}=M F_{\text {out }}$
$\frac{-\left(M_{1} N F_{\text {in }}+M_{1} M F_{L O}-M_{1}\left(\Delta F_{x}\right)_{\max }=M_{1} F_{\text {out }}\right)}{\left(M N_{1}-M_{1} N\right) F_{R F}+M_{1}\left(\Delta F_{x}\right)_{\max }=\left(M-M_{1}\right) F_{\text {out }}}$
with F_{x} defined to be:

$$
\begin{equation*}
F_{x}=\Delta F_{\max }+F_{o u t} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
F_{r f 1}=\frac{\left(M N_{1}-M_{1} N\right) F_{R F}+M_{1}\left(\Delta F_{x}\right)_{\min }}{M-M_{1}} \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
F_{r f 2}=\frac{\left(M N_{1}-M_{1} N\right) F_{R F}+M_{1}\left(\Delta F_{x}\right)_{\max }}{M-M_{1}} \tag{34}
\end{equation*}
$$

Specific Numerical Examples

Case 1:

RF Range: $\quad 200-400 \mathrm{MHz}$
IF Range $\quad 70 \mathrm{MHz}$
LO Range: $\quad 130-330 \mathrm{MHz}$

For an (M, N) spur equal to $(4,-3)$, spurious products appear over the range $(-50,16.666) \mathrm{MHz}$ of the desired output. Input Frequencies within $\pm 50 \mathrm{MHz}$ of the desired input signal produce spurious products at the IF between frequencies (200, 500) MHz for the same $(-4,3)$ order spur.

$$
\begin{aligned}
\Delta F_{x 1, x 2}=\frac{F_{\min }\left(N_{1} M-N M_{1}\right)-F_{\text {out }}\left(M-M_{1}\right)}{N M_{1}} & =\frac{200(4-3)-70(4+1)}{3}=-50.0 \\
& =\frac{400(4-3)-70(4+1)}{3}=-16.6666
\end{aligned}
$$

$$
F_{r f 1, r f 2}=\frac{M_{1} N\left(-\Delta F_{x}\right)+F_{\text {out }}\left(M-M_{1}\right)}{M N_{1}-M_{1} N}=\frac{(-1)(-3)(-50)+70(4+1)}{(4)(1)-(-1)(-3)}=200
$$

$$
=\frac{(-1)(-3)(+50)+70(4+1)}{(4)(1)-(-1)(-3)}=500
$$

Double-check the first pair of answers for $\Delta \mathrm{F}$ calculations:

$$
\begin{array}{ll}
N\left(F_{i n}+\Delta F_{x}\right)+M F_{L O} \equiv F_{I F} \\
-3(200-50)+4(130)=70.0 \quad Y E S \\
-3(200+16.6666)+4(330)=70.0 \text { YES }
\end{array}
$$

Double-check second pair of answers for input frequencies suffering from spurious $(-4,3)$ mechanism.

$$
\begin{array}{lll}
-3\left(F_{R F}-50\right)+4\left(F_{R F}-70\right) \equiv 70 & F_{R F}=200 & Y E S \\
-3\left(F_{R F}+50\right)+4\left(F_{R F}-70\right) \equiv 70 & F_{R F}=500 & Y E S
\end{array}
$$

Case 2:

$\begin{array}{ll}\text { RF Range: } & 300-400 \mathrm{MHz} \\ \text { IF Range } & 50-150 \mathrm{MHz} \\ \text { LO Range: } & 250 \mathrm{MHz}\end{array}$
For an (M, N) spur equal to $(3,-2)$, spurious products appear over the range ($50,-100) \mathrm{MHz}$ of the desired output. Input Frequencies within $\pm 50 \mathrm{MHz}$ of the desired input signal produce spurious products at the IF between frequencies ($366.666,300.0$) MHz for the same $(3,-2)$ order spur.

$$
\begin{array}{r}
\Delta F_{x 1, x 2}=\frac{F_{\min }\left(N_{1}-N\right)-F_{L O}\left(M_{1}-M\right)}{N}=\frac{300(1+3)+250(-1-3)}{-2}=+50.0 \\
=\frac{400(3)-4(250)}{-2}=-100.0
\end{array}
$$

$$
\begin{aligned}
F_{r f 1, r f 2}=\frac{\Delta F_{x} N+\left(M-M_{1}\right) F_{L O}}{N_{1}-N} & =\frac{-50(-2)+(3+1) 250}{1+2}=366.6666 \\
& =\frac{50(-2)+(3+1) 250}{1+2}=300.0
\end{aligned}
$$

Double-check the first pair of answers for $\Delta \mathrm{F}$ calculations:

$$
\begin{array}{ll}
N\left(F_{i n}+\Delta F_{x}\right)+M F_{L O} \equiv F_{I F} & \\
-2(300+50)+3(250)=50.0 & Y E S \\
-2(400-100.0)+3(250)=150.0 & Y E S
\end{array}
$$

Double-check second pair of answers for input frequencies suffering from spurious $(-4,3)$ mechanism.

$$
\begin{array}{lll}
-2\left(F_{R F}-50\right)+3(250.0) \equiv F_{\text {out }}=116.666 & F_{R F}=F_{\text {out }}+F_{L O}=366.6666 & Y E S \\
-2\left(F_{R F}+50\right)+3(250.0) \equiv F_{\text {out }}=50.0 & F_{R F}=F_{\text {out }}+F_{L O}=300.0 & Y E S
\end{array}
$$

Case 3:

RF Range:	$300-400 \mathrm{MHz}$
IF Range	$200-100 \mathrm{MHz}$
LO Range:	500 MHz

For an (M, N) spur equal to $(-2,3)$, spurious products appear over the range ($100,-300) \mathrm{MHz}$ of the desired output. Input Frequencies within $\pm 50 \mathrm{MHz}$ of the desired input signal produce spurious products at the IF between frequencies ($137.5,112.5$) MHz for the same $(-2,3)$ order spur.

$$
\begin{aligned}
\Delta F_{x 1, x 2}=\frac{F_{L o}\left(N_{1} M-N M_{1}\right)-F_{\text {out }}\left(N-N_{1}\right)}{N_{1}} & =\frac{(-1(-2)-3(1)) 500+(3+1) 100}{-1}=100.0 \\
& =\frac{(2-3) 500+(4) 200}{-1}=-300.0
\end{aligned}
$$

$$
\begin{aligned}
F_{r f 1, r f 2}=\frac{\left(N_{1} M-N M_{1}\right) F_{L O}-N_{1}\left(\Delta F_{x}\right)}{N_{1}-N} & =\frac{(-1(-2)-3) 500.0+(-50.0)}{-1-3}=137.5 \\
& =\frac{(2-3) 500+50.0}{-1-3}=112.5
\end{aligned}
$$

Double-check the first pair of answers for $\Delta \mathrm{F}$ calculations:

$$
\begin{array}{ll}
N F_{\text {in }}+M F_{L O} \equiv F_{\text {out }}+\Delta F_{x} & \\
3(300)-2(500)=200+(-300) & Y E S \\
3(400)-2(500)=100+(100) & Y E S
\end{array}
$$

Double-check second pair of answers for input frequencies suffering from spurious $(-4,3)$ mechanism.

$$
\begin{array}{llll}
3\left(F_{R F}\right)-2(500.0) \equiv F_{\text {out }}+\Delta F_{x}=-50+F_{R F}+500 & F_{R F}=362.5, & F_{\text {out }}=500-362.5=137.5 & Y E S \\
3\left(F_{R F}\right)-2(500.0) \equiv F_{\text {out }}+\Delta F_{x}=+50+F_{R F}+500 & F_{R F}=387.5, & F_{\text {out }}=500-387.5=112.5 & Y E S
\end{array}
$$

Case 4:

RF Range:	100 MHz
IF Range	$300-500 \mathrm{MHz}$
LO Range:	$200-400 \mathrm{MHz}$

For an (M, N) spur equal to $(4,-6)$, spurious products appear over the range $(-100,500) \mathrm{MHz}$ of the desired output. Input Frequencies within $\pm 50 \mathrm{MHz}$ of the desired input signal produce spurious products at the IF between frequencies $(316.66,350) \mathrm{MHz}$ for the same $(4,-6)$ order spur.

$$
\begin{aligned}
\Delta F_{x 1, x 2}=\frac{\left(M-M_{1}\right) F_{\text {out }}-\left(M N_{1}-M_{1} N\right) F_{R F}}{N_{1}} & =\frac{(4-1) 300-(4+6) 100}{1.0}=-100.0 \\
& =\frac{(4-1) 500-(4+6) 100}{1.0}=500.0 \\
F_{r f 1, r f 2}=\frac{\left(N_{1} M-N M_{1}\right) F_{R F}-M_{1}\left(\Delta F_{x}\right)}{M-M_{1}} & =\frac{(4+6) 100.0+(-50.0)}{4-1}=316.666 \\
& =\frac{(4+6) 100.0+(+50.0)}{4-1}=350.0
\end{aligned}
$$

Double-check the first pair of answers for $\Delta \mathrm{F}$ calculations:

$$
\begin{array}{ll}
N F_{\text {in }}+M F_{L O} \equiv F_{\text {out }}+\Delta F_{x} \\
3(300)-2(500)=200+(-300) & Y E S \\
3(400)-2(500)=100+(100) & Y E S
\end{array}
$$

Double-check second pair of answers for input frequencies suffering from spurious $(-4,3)$ mechanism.

$$
\begin{aligned}
& -6\left(F_{R F}\right)+4\left(F_{L O}\right) \equiv F_{\text {out }}+\Delta F_{x}=-50+F_{L O}+100 \quad F_{L O}=216.66, \quad F_{\text {out }}=100+216.66=316.666 \text { YES } \\
& -6\left(F_{R F}\right)+4\left(F_{L O}\right) \equiv F_{\text {out }}+\Delta F_{x}=+50+F_{L O}+100 \quad F_{L O}=250.0, \quad F_{\text {out }}=100+250.0=350.0 \quad \text { YES }
\end{aligned}
$$

[^0]: ${ }^{1}$ "Normalized Lowest Intermod Mixer Bandwidth Design Curves," Neuf, D., Piro, P., Microwave Journal, February, 1985.

 2 "A Computer Algorithm for Mixer Spurious Calculations," Victor, A., rf Design, July 1985.
 3 "Graphing Spurious Responses in Microwave Receivers," Karpen, E.W., Mohr, R.J., Microwaves, Nov., 1966.
 4 "A Mixer Spurious Plotting Program," Bain, R., rf Design, May, 1989.

