SO2R Requirements

Essentially there are two requirements for every SO2R installation. The first and most important criterion is protection from damage for each receiver, followed by sufficient reduction of unwanted transmissions into the adjacent receiver affording it the best opportunity for small signal reception.

In my installation the first item above is foremost in importance. I use a Force12 C31XR tribander at 72 feet, and by virtue of the fact that all elements are on the same boom, a high degree of undesirable coupling exists for the SO2R operation. This has been worrisome to the extent that before trying SO2R operation with the tribander, I wanted to do some calculations and measurements. This short paper outlines my measurements and findings. If you are entirely new to SO2R this will provide some insight for you.

Antennas at KØZR

To the left is a figure showing the antenna configuration on the 72 foot crankup tower. The top 7 MHz antenna is a Cushcraft XM240. The bottom antenna is the 14element, Force12 C31XR which covers 14, 21, and 28 MHz. They are separated 8 feet.

I believe most C31XR installations use a single coax feed. Obviously this is not an option for SO2R unless one uses a 2 KW triplexer to evolve one coax per frequency band. In my case I modified the C31XR, following most of the Force12 instructions, for three separate feed lines. The largest differences in my modification were some shortening of the 10m radiator and replacement of the four-turn 15m hairpin coil with a 2-turn coil. I believe

the largest influence driving these small changes was due to the presence of the XM240.

I found when the tower was cranked down to 23 feet with the XM240 at 31 feet, the VSWR was properly positioned in the CW portion of the 7 MHz band, but upon extending the tower to its full height, the resonant frequency moved higher in the band. I lengthened the XM240 radiator by ½ " on each end and the reflector by ¾" on each end. Anywhere above 60 feet elevation the XM240 displays a 1.1:1 resonance near 7.04 MHz.

The rest of the KØZR antenna story is shown to the right. The inv-L path is "in front of" the C31XR as one looks northeast from the tower. Probably not "desirable", but antennas in the front yard

are not either, thus the orientation. The 53 foot vertical is ground-mounted with 90 radials.

Isolation Matrix

My first endeavor was to measure the degree of coupling or isolation between each antenna and the others. This is the "first line of defense" for the other receiver. The manner in which this was done is the following. I used a Rigol spectrum analyzer with a built-in tracking generator to, in essence, measure S_{21} between each possible pair of antennas. In the interest of time and what I deemed suitable accuracy, I considered the measurement floor to be near – 70 dBm. I had the tracking generator set for an output level of 0 dBm.

		Antenna	Coupling			
			TX Band			
RX Band	160	80	40	20	15	10
160	X	-60	-60	-60	-60	-60
80	-60	X	-57	-59	-51.5	-62
40	-60	-51	X	-48.8	-47.5	-50.4
20	-60	-60.6	-53.7	Х	-43.9	-36.1
15	-60	-71.3	-15.6	-40	X	-26.1
10	-60	-66.2	-49.8	-45.5	-48.7	X

Table I

S₂₁ Between the Various Antennas

Additional Rejection

I had the fortune to come across a 300 ft roll of RG11 coax for which I had to pay only about \$18. Wanting to afford the greatest receiver immunity for simultaneous transmissions possible, I have also incorporated a number of stubs on each antenna. With the help of the Rigol spectrum analyzer, the open and shorted stubs were easily tuned for greatest effectiveness. A good reference for this construction is from K2TR. In my case the velocity factor was 0.825 rather than 0.66 as used throughout the cited reference. The performance plots of my additional stubs are shown in the Appendix.

It does speed things along if you have reasonable accuracy in determining the velocity factor of the cable. In my case I measured the physical length of cable, then using the Array Solutions AIM-4170, "tweaked" the velocity factor until the "distance to the fault" (i.e. the open or short at the end of the cable) was what I had measured for the length of the cable. A few iterations and I arrived at 0.825.

			TX Band				
RX Band	160	80	40	20	15	10]
160	Х						
80		Х	-23.6	-20	-17.6	-15.5	K.
40		-25	Х	-26.3	-30.4	-23.6]
20			-24.2	Х	-20.9	-21.5	
15				-25	Х	-22.2	
10			-25.3	-30	-22.8	Х	
							[

Table II

Stubs in use at KØZR

Bandpass Filters for Each Receiver

Each receiver needs additional protection afforded by band-dedicated filters, especially if one is using high power, as is my situation. Originally I was on a course to build my own filters, but the difficulty in obtaining reasonable cost, high voltage capacitors for the project diminished my interest. Therefore, in use at KØZR is a pair of Array Solutions BandPasser II filters, one on each receiver. The worst case results in the CW portion of each band are shown in Table III below.

		Filter Per	formance			
			TX Band			
RX Band	160	80	40	20	15	10
160	X	-42	-60	-60	-55	-55
80	-44	X	-45	-55	-55	-60
40	-60	-55	X	-51	-55	-55
20	-55	-55	-60	X	-48	-48
15	-50	-55	-53	-47	Х	-41
10	-45	-40	-40 -35 -57		-48	X
	* 70 dB ~ k	beyond abi	lity to mea	sure		

Table III

Filter Performance by Band

Composite Results

Within Microsoft Excel I coupled all the aforementioned results into one table which is duplicated below in Table IV. My desire is to have 120 dB isolation between any transmitted signal and that which appears in the other receiver. While I did not achieve this across all six bands, the cumulative attenuation is impressive and considered generally more than adequate for my needs.

		Compilati	on of Resu			
			TX Ant			
RX Ant	160	80	40	20	15	10
160	Х	-102	-120	-120	-115	-115
80	-104	Х	-125.56	-134	-124.1	-137.5
40	-120	-131	Х	-126.1	-132.9	-129
20	-115	-115.6	-137.9	Х	-112.8	-105.6
15	-110	-126.3	-90.6	-112	Х	-89.3
10	-105	-106.2	-110.1	-132.5	-119.5	Х

Table IV S₂₁ Between Antenna Pairs

Green: > 120 dB Isolation Yellow: 100 - 120 dB Isolation Red: < 100 dB Isolation

The "problem areas" are between 15m-40m and 15m-10m. Generally speaking, I believe it unlikely that I will be operating 40 m simultaneously with 15 m so that may be a non-problem. That is not the case, however, between 10m and 15m, which I envision ping-ponging between each when conditions are favorable. It is good that these bands are not harmonically related which would exacerbate this problem.

At a 1600 watt level (a little calculation safety), and a cable loss of 0.75 dB, an attenuation of 120 dB results in a power level at the adjacent receiver of -58.5 dBm. Still a strong signal, but hopefully one a reasonably good receiver can deal with. Table V starts at 1600 watts and considers the isolations just determined to arrive at the signal level in the adjacent receiver.

	Power Level I	Power Level Into Adjacent Receiver for 1600 W Input									
			TX Band								
RX Band	160	80	40	20	15	10					
160	X	-40.99	-58.99	-58.99	-53.99	-53.99					
80	-42.99	X	-64.55	-72.99	-63.09	-76.49					
40	-58.99	-69.99	Х	-65.09	-71.89	-67.99					
20	-53.99	-54.59	-76.89	X	-51.79	-44.59					
15	-48.99	-65.29	-29.59	-50.99	Х	-28.29					
10	-43.99	-45.19	-49.09	-71.49	-58.49	Х					

Table V

Anticipated Signal Levels from 2nd Transmitter

Input Levels Into Adjacent Receiver

Reference

K2TR Coax Stub Filters at n6ws.com/files/stubs.pdf

		TX Power	1346.23	Watts		
Isolation	Pow Into	Receiver	dBm			
30	1.3462	232227	31.2912			
40	0.1346	523223	21.2912		TX Power-	1600
50	0.0134	462322	11.2912		0.75 dB Lo	1346.23
60	0.0013	346232	1.2912			
70	0.000	134623	-8.7088		in dBm	61.2912
80	1.346	23E-05	-18.7088			
90	1.346	23E-06	-28.7088			
100	1.346	23E-07	-38.7088			
110	1.346	23E-08	-48.7088			
120	1.346	23E-09	-58.7088			

Appendix

Individual Stub Performance

Used on 80m Vertical Antenna - Rejects 40, 20, 15, and 10m

One Pair of Stubs Used on 40 m Antenna – Rejects 20, 15, and 10m

RIG	OL		0	2:02:55 2014-11-08		9-	↔ Local	Marker
Status	20 Ref 20.00	dBm Att	10 dB		Marker2	3.5430 MHz	-25.59 dBm	Select Mkr
PAvg	15 10 Mar	ker						1 2 3 4
TRIG Free	s 3.54	43000 MHz						Normal
SWP	₀ -25.	59 dBm						
Cont	-5							Delta
Corr	-10						4	Deita
	-15							Delta Pair
S.T.	-20		1	2				Ref Delta
-D- PA	-30	2 (000 MU-				Ct	2 7000 MU	Span Pair
\sim	Start Freq RBW	3.4000 MHz 3.000 kHz	VB	N 3.000 kHz		Stop Freq SWT	33.333 ms	Span Center
C.Ŵ	Marke	er Table						
∧ ^ \∧∨ Blank	Marker	Trace	Туре	X Axis	Ап	np		Off
	1D	1	Frequency	3.500000 MHz	-23	.21 dBm		
Blank	2D	1	Frequency	3.543000 MHz	-25	.59 dBm		Mkr Trace
A.	3D	1	Frequency	3.590000 MHz	-22	2.60 dBm		Auto 🕨
Math	4D	1	Frequency	3.700000 MHz	-15	i.01 dBm		1/2

An Additional Stub Placed on the 40m Antenna to Reject 80m

Used on 20m Antenna – Rejects 40, 15 and 10m

RIG	OL			05:30:08 2014-10-31			⊷ (Local)	Marker
Status	20 Ref 20.00 d	A mBt	tt 10 d⊟		Marker3	28.036 MHz	-22.20 dBm	Select Mkr
PAvg	15 10 Mar	ker						1234
TRIG	₅28.0)36500 MHz						Normal
CUVD	• -22.	20 dBm			2			Horman
Cont	-5							
↔ Corr	-10		\setminus			`````````````````````````````````		Delta
Ating	-15		\backslash				\bigvee	Delta Pair
s.т.	-20		V				Å.	Ref Delta
-D- PA	-20							Span Pair
AA4	RBW	6.9000 MHZ 300.00 kHz	VB	₩ 300.00 kHz		Stop Freq SWT	30.000 MHz 10.000 ms	Span Center
Ċ.Ŵ	Marke	er Table						
	Marker	Trace	Туре	X Axis	A	mp		Off
e de la	1D	1	Frequency	14.022500 Mł	Hz -2	5.15 dBm		
Blank	2D		Frequency	21.029500 Mł	Hz -C	l.17 dBm		Mkr Trace
NO.V	3D		Frequency	28.036500 Mł	Hz -2	2.20 dBm		Auto 🕨
Math								1/2

Use on 15 m – Rejects 20 and 10m

Additional Stub on 15m Antenna to Reject 40m Signals

Use on 10 m - Rejects 40, 20, and 15m

RIG	OL			07:28:31 2014-10-13			↔ (Local)	Marker
Status	20 Ref 20.00 dBm	Att	10 dB		Marker4	28.295 MHz	-19.60 dBm	Readout
PAvg	15 10 Marker							Frequency >
TRIG Free	₅ 28.2953 [°]	33 MHz						Mkr Table
SWP Cont	₀ -19.60 d	Bm						On Off
↔ Corr	-5 -10							All Off
N. s.t.	-15 -20 2 1						8 4 8 4	
PA	-25 V -30 Start Freq 13.9	00 MHz				Stop Freg	29 000 MHz	
\sim	RBW 300	.00 kHz	VE	W 300.00 kHz		SWI	10.000 ms	
C.W.	Marker Tab	e						
AAAA Blank	Marker Ti	ace	Туре	X Axis	A	np		
DIBHK	1D 1		Frequency	14.000666 MH	lz -2	4.09 dBm		
~^\∕v Blank	2D 1		Frequency	14.202000 MH	lz -2	1.29 dBm		
A	3D 1		Frequency	27.993333 MH	z -2	1.29 dBm		
Math	4D 1		Frequency	28.295333 MH	lz -1	9.60 dBm		2/2

Close-up of 15m Stub Performance

Close-up of 20m Stub Performance